The generator matrix 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2X 4X 1 1 1 1 X 1 1 1 1 1 1 1 1 1 1 3X 2X 1 1 1 0 1 1 1 1 2X 1 1 1 3X 1 1 1 1 1 1 1 1 1 0 1 0 3X 2X X 1 3X+2 3X+3 3X+1 2X+1 3X+4 4X+1 2X+4 2 1 1 2X+3 3 2X+2 4 1 X+2 X+1 3 X+4 0 X+3 1 X+2 4X+4 2 1 1 4X+2 X 2 1 3X+4 4X+4 X+2 2X 1 3X 3X+1 X+4 1 4X+4 4X 3X+2 X+3 2X+1 2X+1 4X+2 4X+1 4 0 0 1 3X+1 2 4 X+4 3X+4 4X+4 3X+2 3X+3 X+2 X 3X 2X+2 3X+2 1 0 4X+3 X+1 3X+4 4X+3 4X 4X+1 2X+1 4X+1 X+3 3X+2 2 3 2X+3 3X+1 4X 2X+2 2X X+2 X+4 2X+4 2X 1 2X+3 X+3 X+1 0 3X+1 4 3X+3 3X+3 3X+4 2X+2 1 3 2X+4 2X+1 4X+1 X generates a code of length 56 over Z5[X]/(X^2) who´s minimum homogenous weight is 214. Homogenous weight enumerator: w(x)=1x^0+360x^214+1552x^215+720x^216+420x^217+1080x^219+1916x^220+760x^221+520x^222+840x^224+1640x^225+740x^226+260x^227+640x^229+1508x^230+560x^231+140x^232+580x^234+1000x^235+220x^236+160x^237+8x^245 The gray image is a linear code over GF(5) with n=280, k=6 and d=214. This code was found by Heurico 1.16 in 16.4 seconds.